miércoles, 29 de mayo de 2013

Razones trigonométricas y Razones circulares

SENO Y COSENO


Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triángulo rectángulo asociado a sus ángulos. Las funciones trigonométricas son funciones cuyos valores son extensiones del concepto de razón trigonométrica en un triángulo rectángulo trazado en una circunferencia unitaria (de radio unidad). Definiciones más modernas las describen como series infinitas o como la solución de ciertas ecuaciones diferenciales, permitiendo su extensión a valores positivos y negativos, e incluso a números complejos.
Existen seis funciones trigonométricas básicas. Las últimas cuatro, se definen en relación de las dos primeras funciones, aunque se pueden definir geométricamente o por medio de sus relaciones. Algunas funciones fueron comunes antiguamente, y aparecen en las primeras tablas, pero no se utilizan actualmente ; por ejemplo el verseno (1 − cos θ) y la 
exsecante (sec θ − 1).



FunciónAbreviaturaEquivalencias (en radianes)
Senosin (sen) \sin \; \theta \equiv \frac{1}{\csc \theta} \equiv \cos \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cos \theta}{\cot \theta} \,
Cosenocos\cos \theta \equiv \frac{1}{\sec \theta} \equiv \sin \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\sin \theta}{\tan \theta} \,
Tangentetan\tan \theta \equiv \frac{1}{\cot \theta} \equiv \cot \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\sin \theta}{\cos \theta} \,
Cotangentectg (cot)\cot \theta \equiv \frac{1}{\tan \theta} \equiv \tan \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cos \theta}{\sin \theta} \,
Secantesec\sec \theta \equiv \frac{1}{\cos \theta} \equiv \csc \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\tan \theta}{\sin \theta} \,
Cosecantecsc (cosec)\csc \theta \equiv \frac{1}{\sin \theta} \equiv \sec \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cot \theta}{\cos \theta} \,










Definiciones respecto de un triángulo rectángulo

Trigono a10.svg
Para definir las razones trigonométricas del ángulo:  \alpha , del vértice A, se parte de un triángulo rectánguloarbitrario que contiene a este ángulo. El nombre de los lados de este triángulo rectángulo que se usará en los sucesivo será:

  • La hipotenusa (h) es el lado opuesto al ángulo recto, o lado de mayor longitud del triángulo rectángulo.
  • El cateto opuesto (a) es el lado opuesto al ángulo  \alpha .
  • El cateto adyacente (b) es el lado adyacente al ángulo  \alpha .
Todos los triángulos considerados se encuentran en el Plano Euclidiano, por lo que la suma de sus ángulos internos es igual a π radianes (o 180°). En consecuencia, en cualquier triángulo rectángulo los ángulos no rectos se encuentran entre 0 y π/2 radianes. Las definiciones que se dan a continuación definen estrictamente las funciones trigonométricas para ángulos dentro de ese rango:
1) El seno de un ángulo es la relación entre la longitud del cateto opuesto y la longitud de la hipotenusa:
\sin \alpha = \frac {{ \color{ForestGreen}\textrm{opuesto}}} {{ \color{Red}\textrm{hipotenusa}}} = \frac {a} {h}.
El valor de esta relación no depende del tamaño del triángulo rectángulo que elijamos, siempre que tenga el mismo ángulo  \alpha  , en cuyo caso se trata de triángulos semejantes.
2) El coseno de un ángulo es la relación entre la longitud del cateto adyacente y la longitud de la hipotenusa:
\cos \alpha = \frac {{ \color{Blue}\textrm{adyacente}}} {{ \color{Red}\textrm{hipotenusa}}} = \frac {b} {h}.


FUNCIONES CIRCULARES (seno & coseno)  

Las seis funciones circulares también llamadas funciones trigonométricasson:seno, coseno, tangente, cotangente, secante y cosecante.  Denotadas respectivamente por: sen x, cos x, tan x, cot x, sec x,  y  csc x.

Definición:  Si x es un número real y (a, b) son coordenadas del punto circular P(x), entonces las seis funciones circulares o trigonométricasse definen como:

                                                                        y

                        

                                                                              P(X) = (a,b)

                                                                                               x
                                                             



                                                      

                                                      


Con esta definición podemos evaluar las seis funciones trigonométricas de los puntos:

Identidades básicas:

Al observar la definición de las funciones circulares (trigonométricas) que cos x = a  y sen x = b  se puede obtener las siguientes identidades:


Como   (a, b) = (cos x, sen x)   está   en  el   círculo  unitario   x2 + y2 = 1  entonces,
(cos x)2 + (sen x)2 = 1, que se escribe usualmente de la forma sen2 x + cos2 x = 1 es otra identidad trigonométrica.  Estas cinco ecuaciones se conocen como identidades básicas.

No hay comentarios:

Publicar un comentario