sábado, 23 de marzo de 2013

Reconoces y realizas operaciones con distinto tipos de funciones

Relación:

Es una correspondencia entre dos conjuntos de elementos. El primer conjunto de elementos se llama dominio y el segundo rango.
Una relación R_{\ }^{\ }, de los conjuntos  A_1, A_2, \ldots , A_n es un subconjunto del producto cartesiano
R\subseteq A_1 \times A_2 \times \ldots \times A_n
Una relación binaria es una relación entre dos conjuntos.
El concepto de relación implica la idea de enumeración de algunos de los elementos, de los conjuntos que forman tupas.
 R(a_1,a_2, \ldots ,a_n) \qquad \mbox{o bien} \qquad (a_1,a_2, \ldots ,a_n) \in R
Un caso particular es cuando todos los conjuntos de la relación son iguales:  A_1 = A_2 = \ldots = A_n  en este caso se representa  A \times A \times \ldots \times A  como  A^n \, , pudiéndose decir que la relación pertenece a A a la n.
R\subseteq A^n


En las relaciones se diferencian los tipos según el número de conjuntos en el producto cartesiano, que es el número de términos de la relación:

Tipos de relaciones

Relación unaria: un solo conjunto  R  \subseteq A , \; R(a)
Relación binaria: con dos conjuntos  R  \subseteq A_1 \times A_2 , \; R(a_1,a_2)
Relación terciaria: con tres conjuntos  R  \subseteq A_1 \times A_2  \times A_3 , \; R(a_1,a_2,a_3)
Relación cuaternaria: con cuatro conjuntos  R  \subseteq A_1 \times A_2 \times A_3 \times A_4 , \; R(a_1,a_2,a_3,a_4)
...
Relación n-ria: caso general con n conjuntos  R  \subseteq A_1 \times A_2 \ldots \times A_n , \; R(a_1,a_2,\ldots,a_n)

No hay comentarios:

Publicar un comentario